Image (range)

The set of values a function actually attains.
Image (range)

Let f:XYf:X\to Y be a function.

  • The image (or range) of ff is f(X):={f(x):xX}Y.f(X):=\{f(x):x\in X\}\subseteq Y.
  • More generally, for a subset AXA\subseteq X, the image of AA under ff is f(A):={f(a):aA}Y.f(A):=\{f(a):a\in A\}\subseteq Y.

The image captures the “actual outputs” of ff and is the natural codomain for which ff becomes surjective (if one replaces YY by f(X)f(X)).

Examples:

  • If f:RRf:\mathbb{R}\to\mathbb{R}, f(x)=x2f(x)=x^2, then f(R)=[0,)f(\mathbb{R})=[0,\infty).
  • If f(x)=x2f(x)=x^2 and A=[1,2]A=[-1,2], then f(A)=[0,4]f(A)=[0,4].
  • If f:RRf:\mathbb{R}\to\mathbb{R}, f(x)=exf(x)=e^x, then f(R)=(0,)f(\mathbb{R})=(0,\infty).