Hessian matrix

The matrix of second partial derivatives of a scalar function f:ℝ^k→ℝ.
Hessian matrix

Let URkU\subseteq\mathbb{R}^k be and let f:URf:U\to\mathbb{R}. If all second exist at aUa\in U, the Hessian matrix of ff at aa is the k×kk\times k matrix

Hf(a):=[2fxixj(a)]1i,jk. H_f(a) := \left[\frac{\partial^2 f}{\partial x_i\,\partial x_j}(a)\right]_{1\le i,j\le k}.

When ff is , the Hessian is symmetric ( commute) and governs second-order and second-derivative tests for extrema.

Examples:

  • If f(x,y)=x2+y2f(x,y)=x^2+y^2, then Hf(x,y)=(2002)H_f(x,y)=\begin{pmatrix}2&0\\0&2\end{pmatrix}.
  • If f(x,y)=xyf(x,y)=xy, then Hf(x,y)=(0110)H_f(x,y)=\begin{pmatrix}0&1\\1&0\end{pmatrix}.
  • For a linear function f(x)=c,xf(x)=\langle c,x\rangle, the Hessian is the zero matrix.