Gradient

The vector of first partial derivatives ∇f of a scalar-valued function.
Gradient

Let URkU\subseteq\mathbb{R}^k be and let f:URf:U\to\mathbb{R} be (at least with existing ) at aUa\in U. The gradient of ff at aa is the vector

f(a):=(fx1(a),,fxk(a))Rk. \nabla f(a) := \left(\frac{\partial f}{\partial x_1}(a),\dots,\frac{\partial f}{\partial x_k}(a)\right)\in\mathbb{R}^k.

When ff is differentiable at aa, f(a)\nabla f(a) represents the linear functional “best approximating” changes in ff near aa, via

f(a+h)f(a)+f(a),h.f(a+h)\approx f(a)+\langle \nabla f(a),h\rangle.

The gradient points in the direction of steepest increase (see ).

Examples:

  • If f(x,y)=x2+y2f(x,y)=x^2+y^2, then f(x,y)=(2x,2y)\nabla f(x,y)=(2x,2y).
  • If f(x)=c,xf(x)=\langle c,x\rangle, then f(x)=c\nabla f(x)=c (constant).
  • If ff has a local extremum at an interior point and is differentiable there, then f(a)=0\nabla f(a)=0 (a necessary condition).