Fundamental Theorem of Calculus, Part II

If F' equals f, then the integral of f equals F(b)-F(a)
Fundamental Theorem of Calculus, Part II

Fundamental Theorem of Calculus (Part II): Let f:[a,b]Rf:[a,b]\to\mathbb{R} be . Suppose F:[a,b]RF:[a,b]\to\mathbb{R} is on (a,b)(a,b), continuous on [a,b][a,b], and satisfies F(x)=f(x)for all x(a,b). F'(x)=f(x)\quad\text{for all }x\in(a,b). Then abf(x)dx=F(b)F(a). \int_a^b f(x)\,dx = F(b)-F(a).

This is the evaluation rule behind essentially all “antiderivative computations” of definite integrals in calculus.

Proof sketch: Let G(x)=axf(t)dtG(x)=\int_a^x f(t)\,dt. By , G(x)=f(x)G'(x)=f(x) for all x(a,b)x\in(a,b). Then (FG)=0(F-G)'=0 on (a,b)(a,b), so FGF-G is constant on [a,b][a,b]. Evaluating at aa gives F(x)G(x)=F(a)F(x)-G(x)=F(a), hence G(b)=F(b)F(a)G(b)=F(b)-F(a).