Euclidean space ℝ^k

The set of k-tuples of real numbers, viewed as k-dimensional space.
Euclidean space ℝ^k

For an integer k1k\ge 1, Euclidean space Rk\mathbb{R}^k is the

Rk:=R××Rk factors.\mathbb{R}^k := \underbrace{\mathbb{R}\times\cdots\times\mathbb{R}}_{k\ \text{factors}}.

An element xRkx\in\mathbb{R}^k is written x=(x1,,xk)x=(x_1,\dots,x_k) with xiRx_i\in\mathbb{R}.

Euclidean spaces are the standard setting for multivariable calculus and for many basic examples in theory. They come equipped with canonical algebraic and geometric structures (addition, scalar multiplication, , ).

Examples:

  • R1=R\mathbb{R}^1=\mathbb{R}.
  • R2={(x,y):x,yR}\mathbb{R}^2=\{(x,y):x,y\in\mathbb{R}\} models the plane.
  • R3={(x,y,z):x,y,zR}\mathbb{R}^3=\{(x,y,z):x,y,z\in\mathbb{R}\} models ordinary 3D space.