Euclidean norm

The standard length ‖x‖2 = sqrt(sum xi^2) of a vector in ℝ^k.
Euclidean norm

For x=(x1,,xk)Rkx=(x_1,\dots,x_k)\in\mathbb{R}^k, the Euclidean norm (also called the 2\ell^2-norm) is

x2:=x12++xk2.\|x\|_2 := \sqrt{x_1^2+\cdots+x_k^2}.

This norm encodes geometric length and induces the standard metric on Rk\mathbb{R}^k via d(x,y)=xy2d(x,y)=\|x-y\|_2. Many analytic and geometric arguments exploit inequalities involving 2\|\cdot\|_2 (e.g., Cauchy–Schwarz).

Examples:

  • If x=(3,4)R2x=(3,4)\in\mathbb{R}^2, then x2=5\|x\|_2=5.
  • If x=(1,1,1)R3x=(1,1,1)\in\mathbb{R}^3, then x2=3\|x\|_2=\sqrt{3}.
  • 02=0\|0\|_2=0 where 0=(0,,0)0=(0,\dots,0).