Equicontinuity + pointwise boundedness implies uniform boundedness on compact sets

On a compact domain, equicontinuity upgrades pointwise bounds to a global bound
Equicontinuity + pointwise boundedness implies uniform boundedness on compact sets

Let (K,d)(K,d) be a and let FC(K,R)\mathcal{F}\subseteq C(K,\mathbb{R}) be a family of . Assume:

  • F\mathcal{F} is on KK, and
  • F\mathcal{F} is on KK (for each xKx\in K, supfFf(x)<\sup_{f\in\mathcal{F}}|f(x)|<\infty).

Lemma: Then F\mathcal{F} is on KK; i.e., there exists M<M<\infty such that f(x)Mfor all fF, xK. |f(x)|\le M\quad \text{for all } f\in\mathcal{F},\ x\in K.

This lemma is a standard step in the proof of the .

Proof sketch: Apply equicontinuity with ε=1\varepsilon=1: for each xKx\in K there exists δx>0\delta_x>0 such that d(x,y)<δx    f(y)f(x)<1for all fF. d(x,y)<\delta_x \implies |f(y)-f(x)|<1 \quad \text{for all } f\in\mathcal{F}. By pointwise boundedness at xx, choose MxM_x with f(x)Mx|f(x)|\le M_x for all fFf\in\mathcal{F}. Then for all yHAHAHUGOSHORTCODE625s7HBHB(x,δx)y\in (x,\delta_x) and all fFf\in\mathcal{F}, f(y)f(y)f(x)+f(x)<1+Mx. |f(y)|\le |f(y)-f(x)|+|f(x)|<1+M_x. The balls {B(x,δx)}xK\{B(x,\delta_x)\}_{x\in K} form an of KK. Compactness gives a finite subcover B(xi,δxi)B(x_i,\delta_{x_i}) for i=1,,Ni=1,\dots,N. Let M=max1iN(1+Mxi), M=\max_{1\le i\le N} (1+M_{x_i}), which is finite. Then f(y)M|f(y)|\le M for all yKy\in K and all fFf\in\mathcal{F}.