Differentiation rules (one variable)

Linearity, product, quotient, and chain rules for derivatives
Differentiation rules (one variable)

Let IRI\subseteq\mathbb{R} be an and let f,g:IRf,g:I\to\mathbb{R} be at a point xIx\in I^\circ (interior of II). Let cRc\in\mathbb{R}.

Proposition (standard derivative rules):

  • Linearity: (f+g)(x)=f(x)+g(x),(cf)(x)=cf(x). (f+g)'(x)=f'(x)+g'(x),\qquad (cf)'(x)=c f'(x).
  • Product rule: (fg)(x)=f(x)g(x)+f(x)g(x). (fg)'(x)=f'(x)g(x)+f(x)g'(x).
  • Quotient rule: if g(x)0g(x)\neq 0, then (fg)(x)=f(x)g(x)f(x)g(x)g(x)2. \left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}.
  • : if gg is differentiable at xx and ff is differentiable at g(x)g(x), then (fg)(x)=f(g(x))g(x). (f\circ g)'(x)=f'(g(x))\,g'(x).

These formulas are the computational backbone of differential calculus; they are proved directly from the definition of the .

Proof sketch: Use algebraic manipulation of difference quotients, e.g. $ \frac{f(x+h)g(x+h)-f(x)g(x)}{h}

\frac{f(x+h)-f(x)}{h}g(x+h)+f(x)\frac{g(x+h)-g(x)}{h}, $ then pass to the limit using of differentiable functions.