Derived set

The set of all limit points of a given set in a metric space.
Derived set

Let (X,d)(X,d) be a metric space and let AXA\subseteq X. The derived set of AA, denoted AA', is the set of all limit points of AA:

A:={xX:x is a limit point of A}.A' := \{x\in X : x\ \text{is a limit point of }A\}.

The derived set isolates where a set “accumulates.” It is useful in studying closed sets, perfect sets, and in iterative constructions like the Cantor–Bendixson process.

Examples:

  • In R\mathbb{R}, if A=(0,1)A=(0,1) then A=[0,1]A'=[0,1].
  • If A={1/n:nN}A=\{1/n:n\in\mathbb{N}\}, then A={0}A'=\{0\}.
  • If A=ZA=\mathbb{Z} in R\mathbb{R}, then A=A'=\varnothing.