Convergent series terms go to zero

If a series converges, its terms must converge to 0
Convergent series terms go to zero

Corollary: If n=1an\sum_{n=1}^\infty a_n in R\mathbb{R} or C\mathbb{C}, then an0as n. a_n\to 0 \quad\text{as } n\to\infty.

This is a necessary condition for convergence of a series (but far from sufficient).

Connection to parent theorem: Let sN=n=1Nans_N=\sum_{n=1}^N a_n be the . If sNss_N\to s, then aN=sNsN1ss=0. a_N = s_N - s_{N-1}\to s-s=0.