Convergent implies Cauchy

Every convergent sequence is Cauchy in any metric space
Convergent implies Cauchy

Convergent implies Cauchy: Let (X,d)(X,d) be a and let (xn)(x_n) be a sequence in XX. If xnxx_n\to x for some xXx\in X, then (xn)(x_n) is a : ε>0  N  m,nN: d(xn,xm)<ε. \forall\varepsilon>0\;\exists N\;\forall m,n\ge N:\ d(x_n,x_m)<\varepsilon.

This lemma is a standard one-way implication in arguments.

Proof sketch: Given ε>0\varepsilon>0, choose NN such that d(xn,x)<ε/2d(x_n,x)<\varepsilon/2 for all nNn\ge N. Then for m,nNm,n\ge N, d(xn,xm)d(xn,x)+d(x,xm)<ε. d(x_n,x_m)\le d(x_n,x)+d(x,x_m)<\varepsilon.