Complex numbers

Numbers of the form a+bi with i^2=-1, forming a field extending the reals.
Complex numbers

The complex numbers are

C:={a+bi:a,bR, i2=1}.\mathbb{C}:=\{a+bi : a,b\in\mathbb{R},\ i^2=-1\}.

Addition and multiplication are defined by

(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)+(c+di)=(a+c)+(b+d)i,

(a+bi)(c+di)=(acbd)+(ad+bc)i.(a+bi)(c+di)=(ac-bd)+(ad+bc)i.

The field C\mathbb{C} is a two-dimensional real vector space and can be identified with R2\mathbb{R}^2 via a+bi(a,b)a+bi\leftrightarrow(a,b). Complex numbers are the natural setting for Fourier analysis, power series, and many aspects of analysis and geometry.

Examples:

  • z=32iz=3-2i has real part 33 and imaginary part 2-2.
  • (1+i)2=1+2i+i2=2i(1+i)^2 = 1+2i+i^2 = 2i.
  • The real numbers embed into C\mathbb{C} via aa+0ia\mapsto a+0i.