Complex conjugate

The map a+bi ↦ a-bi on complex numbers.
Complex conjugate

For z=a+biCz=a+bi\in\mathbb{C} with a,bRa,b\in\mathbb{R}, the complex conjugate of zz is

z:=abi.\overline{z}:=a-bi.

Complex conjugation is an algebraic involution: it reverses the sign of the imaginary part and satisfies z=z\overline{\overline{z}}=z. It is used to express the modulus and to compute inverses: if z0z\ne 0 then z1=z/(zz)z^{-1}=\overline{z}/(z\overline{z}).

Examples:

  • If z=32iz=3-2i, then z=3+2i\overline{z}=3+2i.
  • (1+i)2=2i=2i\overline{(1+i)^2}=\overline{2i}=-2i.
  • If z=iyz=iy with yRy\in\mathbb{R}, then z=iy\overline{z}=-iy.