Cauchy Mean Value Theorem

A two-function generalization of the mean value theorem
Cauchy Mean Value Theorem

Cauchy Mean Value Theorem: Let f,g:[a,b]Rf,g:[a,b]\to\mathbb{R} be on [a,b][a,b] and on (a,b)(a,b). Then there exists c(a,b)c\in(a,b) such that (f(b)f(a))g(c)=(g(b)g(a))f(c). \bigl(f(b)-f(a)\bigr)g'(c)=\bigl(g(b)-g(a)\bigr)f'(c). If moreover g(b)g(a)g(b)\neq g(a) and g(c)0g'(c)\neq 0, then this can be rewritten as f(c)g(c)=f(b)f(a)g(b)g(a). \frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}.

This theorem is a standard tool for proving and for comparing rates of change of two functions.

Proof sketch: Consider h(x)=(f(b)f(a))g(x)(g(b)g(a))f(x).h(x)=\bigl(f(b)-f(a)\bigr)g(x)-\bigl(g(b)-g(a)\bigr)f(x). Then hh is continuous on [a,b][a,b], differentiable on (a,b)(a,b), and h(a)=h(b)h(a)=h(b). Apply to hh to obtain h(c)=0h'(c)=0 and rearrange.