Cauchy–Hadamard Theorem

Gives the radius of convergence of a power series via a limsup of nth roots
Cauchy–Hadamard Theorem

Cauchy–Hadamard Theorem: Consider the power n=0an(xx0)n \sum_{n=0}^\infty a_n (x-x_0)^n with anRa_n\in\mathbb{R} or C\mathbb{C}. Define L=lim supnann[0,]. L=\limsup_{n\to\infty}\sqrt[n]{|a_n|}\in[0,\infty]. Then the radius of convergence RR is R=1L, R=\frac{1}{L}, with the conventions 1/0=1/0=\infty and 1/=01/\infty=0. The series for xx0<R|x-x_0|<R and for xx0>R|x-x_0|>R.

This theorem is the standard quantitative description of where a power series defines a function.

Proof sketch: Apply the to the term an(xx0)na_n(x-x_0)^n. The nnth root of its magnitude is annxx0\sqrt[n]{|a_n|}\,|x-x_0|, whose is Lxx0L|x-x_0|. The root test yields convergence when Lxx0<1L|x-x_0|<1 and divergence when Lxx0>1L|x-x_0|>1.