Cauchy criterion for convergence in R^k

A sequence in Euclidean space converges iff it is Cauchy
Cauchy criterion for convergence in R^k

Cauchy criterion for convergence in Rk\mathbb{R}^k: A sequence (xn)(x_n) in Rk\mathbb{R}^k (with respect to the ) if and only if it is a ; i.e., xnx for some xRkε>0  N  m,nN: xnxm<ε.x_n\to x \text{ for some } x\in\mathbb{R}^k \quad\Longleftrightarrow\quad \forall \varepsilon>0\;\exists N\;\forall m,n\ge N:\ \|x_n-x_m\|<\varepsilon.

This is the of Euclidean space and is central to analysis: it allows one to prove convergence by controlling pairwise distances rather than guessing the limit.

Proof sketch (optional): If xnxx_n\to x then xnxmxnx+xmx\|x_n-x_m\|\le \|x_n-x\|+\|x_m-x\| shows Cauchy. Conversely, if (xn)(x_n) is Cauchy, each coordinate sequence is Cauchy in R\mathbb{R} and hence convergent; the vector of coordinate limits is the limit in Rk\mathbb{R}^k.