Cartesian product

The set of ordered pairs formed from two sets.
Cartesian product

The Cartesian product of sets AA and BB is

A×B:={(a,b):aA, bB}.A\times B := \{(a,b) : a\in A,\ b\in B\}.

Cartesian products encode “simultaneous choices” and underlie coordinate descriptions: R2=R×R\mathbb{R}^2=\mathbb{R}\times\mathbb{R}, graphs of functions are subsets of X×YX\times Y, and relations are subsets of products.

Examples:

  • If A={1,2}A=\{1,2\} and B={a,b}B=\{a,b\}, then A×B={(1,a),(1,b),(2,a),(2,b)}A\times B=\{(1,a),(1,b),(2,a),(2,b)\}.
  • R3=R×R×R\mathbb{R}^3=\mathbb{R}\times\mathbb{R}\times\mathbb{R}.
  • If A=A=\varnothing, then A×B=A\times B=\varnothing for any set BB.