Boundary

The set of points where every neighborhood meets both the set and its complement.
Boundary

Let (X,d)(X,d) be a and let AXA\subseteq X. The boundary of AA, denoted A\partial A, is

A:=Aint(A).\partial A := \overline{A}\setminus \operatorname{int}(A).

Equivalently,

A=AXA\partial A = \overline{A}\cap \overline{X\setminus A}

(see and ). Equivalently again, xAx\in\partial A iff every B(x,r)B(x,r) meets both AA and XAX\setminus A.

Boundaries isolate the “edge” of a set and play a key role in topology and analysis (e.g., in describing discontinuity sets and in integration theory).

Examples:

  • In R\mathbb{R}, (0,1)={0,1}\partial(0,1)=\{0,1\}.
  • In R2\mathbb{R}^2, the boundary of the open unit disk B(0,1)B(0,1) is the unit circle S(0,1)S(0,1).
  • If A=QRA=\mathbb{Q}\subseteq\mathbb{R}, then A=R\partial A=\mathbb{R} (every interval meets both Q\mathbb{Q} and RQ\mathbb{R}\setminus\mathbb{Q}).