Banach Fixed Point Theorem

A contraction on a complete metric space has a unique fixed point, found by iteration
Banach Fixed Point Theorem

Banach Fixed Point Theorem (contraction mapping principle): Let (X,d)(X,d) be a and let T:XXT:X\to X be a with contraction constant c[0,1)c\in[0,1). Then:

  • There exists a unique xXx^\ast\in X such that T(x)=xT(x^\ast)=x^\ast.
  • For any starting point x0Xx_0\in X, the iterates defined by xn+1=T(xn)(n0) x_{n+1}=T(x_n)\quad(n\ge 0) to xx^\ast.
  • Quantitative error bounds hold: for all n0n\ge 0, d(xn,x)cn1cd(x1,x0),d(xn,x)cnd(x0,x). d(x_{n},x^\ast)\le \frac{c^{n}}{1-c}\,d(x_1,x_0), \qquad d(x_n,x^\ast)\le c^n\,d(x_0,x^\ast).

This theorem is one of the main uses of completeness: it turns a global “shrinking” hypothesis into existence and uniqueness of solutions of T(x)=xT(x)=x.

Proof sketch: From the contraction inequality, d(xn+1,xn)=d(Txn,Txn1)cd(xn,xn1)cnd(x1,x0). d(x_{n+1},x_n)=d(Tx_n,Tx_{n-1})\le c\,d(x_n,x_{n-1})\le \cdots \le c^n d(x_1,x_0). Then for m>nm>n, d(xm,xn)k=nm1d(xk+1,xk)d(x1,x0)k=nck=cn1cd(x1,x0), d(x_m,x_n)\le \sum_{k=n}^{m-1} d(x_{k+1},x_k) \le d(x_1,x_0)\sum_{k=n}^{\infty} c^k =\frac{c^n}{1-c}d(x_1,x_0), so (xn)(x_n) is and hence converges (completeness) to some xXx^\ast\in X. of TT (it is ) gives T(x)=xT(x^\ast)=x^\ast. Uniqueness follows since if Tx=xTx=x and Ty=yTy=y, then d(x,y)=d(Tx,Ty)cd(x,y), d(x,y)=d(Tx,Ty)\le c\,d(x,y), forcing d(x,y)=0d(x,y)=0 and hence x=yx=y.