Algebraic properties of sup and inf

Supremum and infimum behave predictably under inclusion, translation, scaling, and unions
Algebraic properties of sup and inf

Let E,FRE,F\subseteq\mathbb{R} be nonempty and above/below where needed, and let cRc\in\mathbb{R}.

Order properties:

  • If EFE\subseteq F and both are bounded above, then HAHAHUGOSHORTCODE515s1HBHBEsupF E\le \sup F.
  • If EFE\subseteq F and both are bounded below, then HAHAHUGOSHORTCODE515s2HBHBEinfF E\ge \inf F.

Translation:

  • If E+c={x+c:xE}E+c=\{x+c:x\in E\}, then sup(E+c)=supE+c,inf(E+c)=infE+c. \sup(E+c)=\sup E + c,\qquad \inf(E+c)=\inf E + c.

Scaling:

  • If λ0\lambda\ge 0 and λE={λx:xE}\lambda E=\{\lambda x:x\in E\}, then sup(λE)=λsupE,inf(λE)=λinfE. \sup(\lambda E)=\lambda\,\sup E,\qquad \inf(\lambda E)=\lambda\,\inf E.
  • If λ<0\lambda<0, then sup(λE)=λinfE,inf(λE)=λsupE. \sup(\lambda E)=\lambda\,\inf E,\qquad \inf(\lambda E)=\lambda\,\sup E. In particular, sup(E)=infE,inf(E)=supE. \sup(-E)=-\inf E,\qquad \inf(-E)=-\sup E.

Finite unions:

  • If EE and FF are bounded above, then EFE\cup F is bounded above and sup(EF)=HAHAHUGOSHORTCODE515s3HBHB{supE,supF}. \sup(E\cup F)= \{\sup E,\sup F\}. Similarly, if bounded below then inf(EF)=HAHAHUGOSHORTCODE515s4HBHB{infE,infF}. \inf(E\cup F)= \{\inf E,\inf F\}.

These rules are used constantly to manipulate bounds and to compare limiting processes.

Proof sketch: All statements follow by checking the defining universal properties of sup\sup and inf\inf. For example, to show sup(E+c)=supE+c\sup(E+c)=\sup E+c, note that uu is an for E+cE+c iff ucu-c is an upper bound for EE, then apply least-upper-bound minimality.