Euclidean domain ⇒ PID

Every Euclidean domain has all ideals principal.
Euclidean domain ⇒ PID

Euclidean domain ⇒ PID: If RR is a , then RR is a : every of RR is a .

Proof sketch: Let I(0)I\neq (0) be an ideal and choose aIa\in I of minimal Euclidean norm. For any bIb\in I, divide b=qa+rb=qa+r with either r=0r=0 or δ(r)<δ(a)\delta(r)<\delta(a). Since r=bqaIr=b-qa\in I, minimality forces r=0r=0, hence b(a)b\in (a). Therefore I=(a)I=(a). The argument uses the division property encoded by the .