Tensor–Hom adjunction lemma

Natural isomorphism between Hom out of a tensor product and Hom into a Hom-module.
Tensor–Hom adjunction lemma

Tensor–Hom adjunction lemma: Let R,SR,S be , let SMR{}_S M_R be an (S,R)(S,R)- , let RN{}_R N be a left RR- , and let SP{}_S P be a left SS-module. Then there is a natural isomorphism of abelian groups

HomS(MRN,P)    HomR ⁣(N,HomS(M,P)), \operatorname{Hom}_S(M\otimes_R N,\,P)\;\cong\;\operatorname{Hom}_R\!\bigl(N,\,\operatorname{Hom}_S(M,P)\bigr),

functorial in NN and PP.

This is the concrete form of the for a , relating and .