Tensor–Hom adjunction

The natural identification Hom(M⊗N,P) ≅ Hom(M,Hom(N,P)).
Tensor–Hom adjunction

The tensor–Hom adjunction (over a commutative ring RR) is the natural isomorphism of abelian groups (indeed RR-modules)

HomR(MRN,P)    HomR ⁣(M,HomR(N,P)), \mathrm{Hom}_R(M\otimes_R N,\,P)\;\cong\;\mathrm{Hom}_R\!\bigl(M,\,\mathrm{Hom}_R(N,P)\bigr),

natural in M,N,PM,N,P, where R\otimes_R is the and HomR(N,P)\mathrm{Hom}_R(N,P) is the . Concretely, a map f ⁣:MRNPf\colon M\otimes_R N\to P corresponds to the map Φ(f) ⁣:MHomR(N,P)\Phi(f)\colon M\to \mathrm{Hom}_R(N,P) defined by Φ(f)(m)(n)=f(mn)\Phi(f)(m)(n)=f(m\otimes n), with inverse Ψ(g)(mn)=g(m)(n)\Psi(g)(m\otimes n)=g(m)(n).

This adjunction is a formal consequence of the : it linearizes , and it specializes to duality when P=RP=R, giving HomR(MRN,R)HomR(M,N)\mathrm{Hom}_R(M\otimes_R N,R)\cong \mathrm{Hom}_R(M,N^\vee) with NN^\vee the

Examples:

  • Bilinear pairings M×NPM\times N\to P correspond to linear maps MHomR(N,P)M\to \mathrm{Hom}_R(N,P).
  • Taking P=RP=R identifies bilinear forms M×NRM\times N\to R with linear maps MNM\to N^\vee.