Hom module

The module (or abelian group) of module homomorphisms between two modules.
Hom module

A Hom module HomR(M,N)\mathrm{Hom}_R(M,N) is the set of all f ⁣:MNf\colon M\to N between RR- , equipped with pointwise addition (f+g)(m)=f(m)+g(m)(f+g)(m)=f(m)+g(m). This makes HomR(M,N)\mathrm{Hom}_R(M,N) an abelian group. If RR is a , then HomR(M,N)\mathrm{Hom}_R(M,N) is naturally an RR-module via (rf)(m)=rf(m)(r\cdot f)(m)=r\,f(m).

In the noncommutative setting, additional module structures arise from bimodules: if MM is an (R,S)(R,S)- and NN is a left RR-module, then HomR(M,N)\mathrm{Hom}_R(M,N) carries a natural left SS-module structure by (sf)(m)=f(ms)(s\cdot f)(m)=f(ms).

Examples:

  • For any left RR-module MM, evaluation at 11 gives HomR(R,M)M\mathrm{Hom}_R(R,M)\cong M.
  • If V,WV,W are over a field kk, then Homk(V,W)\mathrm{Hom}_k(V,W) is a vector space, naturally isomorphic to the space of kk-linear maps VWV\to W.