Free module universal property

A free module on a set represents functions out of that set by unique linear extension.
Free module universal property

Free module universal property: Let XX be a set and let FF be a free RR-module on XX, equipped with a function η:XF\eta:X\to F. For any RR-module MM and any function g:XMg:X\to M, there exists a unique RR-module homomorphism g~:FM\tilde g:F\to M such that g~η=g\tilde g\circ \eta=g.

This universal property characterizes as the “linearizations” of , turning into by unique extension.