Chinese remainder for modules

Module quotients by comaximal ideal multiples split as a direct sum of smaller quotients.
Chinese remainder for modules

Chinese remainder for modules: Let RR be a commutative ring, let MM be an RR-module, and let I1,,InRI_1,\dots,I_n\subset R be pairwise comaximal ideals. Then the canonical map

M/(j=1nIjM)j=1nM/IjM M\Big/\Bigl(\bigcap_{j=1}^n I_j M\Bigr)\longrightarrow \bigoplus_{j=1}^n M/I_j M

is an isomorphism of RR-modules. In particular, if I+J=RI+J=R then M/(IMJM)M/IMM/JMM/(IM\cap JM)\cong M/IM\oplus M/JM.

This is the module-level consequence of the for pairwise comaximal in a , expressed as an isomorphism of into a .