Annihilator of a module

The ideal of scalars that kill the entire module.
Annihilator of a module

Let MM be a left RR- . The annihilator of MM is

annR(M)={rR:rM=0}. \operatorname{ann}_R(M)=\{r\in R: rM=0\}.

It equals the of the elementwise annihilators:

annR(M)=mMannR(m), \operatorname{ann}_R(M)=\bigcap_{m\in M}\operatorname{ann}_R(m),

where annR(m)\operatorname{ann}_R(m) is the . For a left module, annR(M)\operatorname{ann}_R(M) is a , since it is stable under multiplication on both sides by arbitrary ring elements.

The annihilator measures faithfulness: MM is faithful iff annR(M)=0\operatorname{ann}_R(M)=0.

Examples:

  • For a commutative ring RR and ideal II, the module R/IR/I satisfies annR(R/I)=I\operatorname{ann}_R(R/I)=I.
  • If M=0M=0, then annR(M)=R\operatorname{ann}_R(M)=R.
  • If M=RM=R as a left module over itself, then annR(M)=0\operatorname{ann}_R(M)=0.