Product of normal subgroups is normal

If N and M are normal in G then NM is a normal subgroup of G
Product of normal subgroups is normal

Proposition (Product of normal subgroups). Let GG be a and let N,MGN,M \lhd G be . Define

NM  =  {nm:nN, mM}G. NM \;=\; \{nm : n\in N,\ m\in M\}\subseteq G.

Then NMNM is a normal subgroup of GG. Moreover, NM=MNNM=MN.

Context. Products like NMNM appear in building larger normal subgroups from smaller ones (e.g. in series and extensions). The equality NM=MNNM=MN is a typical “normality makes products commute setwise” phenomenon.

Proof sketch.

  • Subgroup: If n1m1,n2m2NMn_1m_1,n_2m_2\in NM, then (n1m1)(n2m2)1=n1m1m21n21. (n_1m_1)(n_2m_2)^{-1}=n_1m_1m_2^{-1}n_2^{-1}. Since MGM\lhd G, conjugation by n21n_2^{-1} preserves MM, so m1m21n21=n21mm_1m_2^{-1}n_2^{-1}=n_2^{-1}m' for some mMm'\in M. Hence the product lies in NMNM.
  • Normality: For gGg\in G and nmNMnm\in NM, g(nm)g1=(gng1)(gmg1)NM g(nm)g^{-1}=(gng^{-1})(gmg^{-1})\in NM since NN and MM are normal.
  • Setwise commutativity: For nN,mMn\in N,m\in M, normality of NN gives mnm1Nmnm^{-1}\in N, so nm=(mnm1)mMNnm=(mnm^{-1})m\in MN, hence NMMNNM\subseteq MN; similarly MNNMMN\subseteq NM.