Kernel is normal

The kernel of a group homomorphism is a normal subgroup
Kernel is normal

Proposition (Kernel is normal). Let f:GHf:G\to H be a . Let ker(f)\ker(f) be its . Then ker(f)\ker(f) is a of GG.

Context. Normal subgroups arise naturally as kernels; conversely, every normal subgroup is the kernel of a canonical map to a quotient group.

Proof sketch. Let kker(f)k\in \ker(f) and gGg\in G. Then

f(gkg1)=f(g)f(k)f(g)1=f(g)ef(g)1=e, f(gkg^{-1})=f(g)f(k)f(g)^{-1}=f(g)\,e\,f(g)^{-1}=e,

so gkg1ker(f)gkg^{-1}\in \ker(f). Hence ker(f)G\ker(f)\lhd G.