Kernel of a group homomorphism

The set of elements mapped to the identity by a group homomorphism
Kernel of a group homomorphism

Let φ ⁣:GH\varphi\colon G\to H be a . The kernel of φ\varphi is the subset ker(φ)={gG:φ(g)=eH}. \ker(\varphi)=\{g\in G : \varphi(g)=e_H\}. Equivalently, ker(φ)\ker(\varphi) is the of {eH}\{e_H\} under φ\varphi.

The kernel is always a of GG. Moreover, φ\varphi is a if and only if ker(φ)={eG}\ker(\varphi)=\{e_G\}. The kernel controls the “collapse” of GG under φ\varphi; the identifies the quotient G/ker(φ)G/\ker(\varphi) with the image of φ\varphi.

Examples:

  • For the reduction map π ⁣:ZZ/nZ\pi\colon\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z}, one has ker(π)=nZ\ker(\pi)=n\mathbb{Z}.
  • For sgn ⁣:Sn{±1}\mathrm{sgn}\colon S_n\to\{\pm1\}, the kernel is AnA_n.
  • For det ⁣:GLm(R)R×\det\colon GL_m(\mathbb{R})\to\mathbb{R}^\times, the kernel is SLm(R)SL_m(\mathbb{R}).