Cyclic Subgroup

A subgroup generated by a single element
Cyclic Subgroup

Let GG be a and let gGg\in G. The cyclic subgroup generated by gg is g  =  {gn:nZ}, \langle g\rangle \;=\;\{g^n : n\in\mathbb{Z}\}, where powers are defined by g0=eg^0=e, gn+1=gngg^{n+1}=g^n g for n0n\ge 0, and gn=(g1)ng^{-n}=(g^{-1})^n for n1n\ge 1. This is a of GG. More generally, g\langle g\rangle is a special case of the .

A group is called cyclic if it equals g\langle g\rangle for some element gg.

Examples:

  • In (Z,+)(\mathbb{Z},+), 3=3Z\langle 3\rangle = 3\mathbb{Z}.
  • In C×\mathbb{C}^{\times}, i={1,i,1,i}\langle i\rangle = \{1,i,-1,-i\}.
  • In S3S_3, (123)={e,(123),(132)}\langle (123)\rangle=\{e,(123),(132)\}.
  • e\langle e\rangle is the trivial subgroup.