Centralizer

The subgroup of elements commuting with a given subset
Centralizer

Let GG be a and let SGS\subseteq G be a . The centralizer of SS in GG is CG(S)  =  {gG:gs=sg for all sS}. C_G(S) \;=\; \{\,g\in G : gs=sg \text{ for all } s\in S\,\}. This is a of GG. For a single element xGx\in G, one writes CG(x)C_G(x) for CG({x})C_G(\{x\}).

Centralizers organize commutation in a group and control (e.g. via orbit–stabilizer for the conjugation action). The center satisfies Z(G)=CG(G)Z(G)=C_G(G).

Examples:

  • If GG is abelian, then CG(S)=GC_G(S)=G for every subset SS.
  • In S3S_3, CS3((12))={e,(12)}C_{S_3}((12))=\{e,(12)\}.
  • In S3S_3, CS3((123))={e,(123),(132)}C_{S_3}((123))=\{e,(123),(132)\}.