Transcendental element

An element α is transcendental over K if no nonzero polynomial in K[x] vanishes at α.
Transcendental element

Definition. Let L/KL/K be a and αL\alpha\in L. The element α\alpha is transcendental over KK if

f(α)0for every nonzero f(x)K[x]. f(\alpha)\neq 0 \quad \text{for every nonzero } f(x)\in K[x].

Equivalently, α\alpha is not .

If tt is transcendental over KK, the field K(t)K(t) of rational functions behaves like a “field of fractions” of the polynomial ring K[t]K[t] (compare ).

See also. , .

Examples.

  1. If tt is an indeterminate, then tt is transcendental over any field KK, and K(t)K(t) is the rational function field.
  2. The numbers π\pi and ee are transcendental over Q\mathbb{Q}, hence also transcendental over any subfield of C\mathbb{C} contained in Q\overline{\mathbb{Q}}.
  3. In Fp(t)\mathbb{F}_p(t), the element tt is transcendental over Fp\mathbb{F}_p.