Trace and Norm in Towers

Trace and norm compose multiplicatively/additively along a finite tower.
Trace and Norm in Towers

Theorem (Tower formulas).
Let KLMK \subseteq L \subseteq M be a tower of finite extensions. Then:

  • (Trace) TrM/K=TrL/KTrM/L\mathrm{Tr}_{M/K} = \mathrm{Tr}_{L/K}\circ \mathrm{Tr}_{M/L} as maps MKM\to K.
  • (Norm) NM/K=NL/KNM/LN_{M/K} = N_{L/K}\circ N_{M/L} as maps M×K×M^\times\to K^\times.

These are the standard and compatibility relations, and they pair naturally with the for degrees.

Examples.

  1. If KLMK\subseteq L\subseteq M and αM\alpha\in M, then TrM/K(α)=TrL/K(TrM/L(α))\mathrm{Tr}_{M/K}(\alpha)=\mathrm{Tr}_{L/K}(\mathrm{Tr}_{M/L}(\alpha)).
  2. For finite fields FqFqmFqmn \mathbb{F}_q \subseteq \mathbb{F}_{q^m} \subseteq \mathbb{F}_{q^{mn}}, norms satisfy NFqmn/Fq=NFqm/FqNFqmn/FqmN_{\mathbb{F}_{q^{mn}}/\mathbb{F}_q} = N_{\mathbb{F}_{q^m}/\mathbb{F}_q}\circ N_{\mathbb{F}_{q^{mn}}/\mathbb{F}_{q^m}}.
  3. For quadratic towers KLMK \subset L \subset M with both steps degree 22, norms multiply: NM/K(α)=NL/K(NM/L(α))N_{M/K}(\alpha)=N_{L/K}(N_{M/L}(\alpha)).

Related. , .