Field trace

For a finite extension L/K, Tr_{L/K}(α) is the trace of multiplication-by-α as a K-linear map.
Field trace

Definition. Let L/KL/K be a finite with n=[L:K]n=[L:K]. For αL\alpha\in L, define the KK-linear map

mα:LL,xαx. m_\alpha : L \to L,\qquad x \mapsto \alpha x.

The trace of α\alpha from LL to KK is

TrL/K(α)  =  tr(mα)K, \mathrm{Tr}_{L/K}(\alpha) \;=\; \mathrm{tr}(m_\alpha)\in K,

the ordinary of this linear operator.

The trace is KK-linear and interacts with towers via .

See also. , .

Examples.

  1. In L=Q(d)L=\mathbb{Q}(\sqrt d) with char(K)2\mathrm{char}(K)\neq 2, TrL/Q(a+bd)=2a\mathrm{Tr}_{L/\mathbb{Q}}(a+b\sqrt d)=2a.
  2. In C/R\mathbb{C}/\mathbb{R}, TrC/R(a+bi)=2a\mathrm{Tr}_{\mathbb{C}/\mathbb{R}}(a+bi)=2a.
  3. For L=FqnL=\mathbb{F}_{q^n} over Fq\mathbb{F}_q, TrL/Fq(α)=α+αq++αqn1\mathrm{Tr}_{L/\mathbb{F}_q}(\alpha)=\alpha+\alpha^q+\cdots+\alpha^{q^{n-1}}.