Tower of fields

A chain of field extensions K ⊆ F ⊆ L, used to compare degrees and structure.
Tower of fields

Definition. A tower of fields is a chain of inclusions

KFL K \subseteq F \subseteq L

where each inclusion is a . The middle field FF is an of L/KL/K.

If the degrees are finite, the gives

[L:K]=[L:F][F:K]. [L:K]=[L:F]\,[F:K].

See also. , .

Examples.

  1. QQ(2)Q(2,3)\mathbb{Q}\subseteq \mathbb{Q}(\sqrt2)\subseteq \mathbb{Q}(\sqrt2,\sqrt3) is a tower with [Q(2):Q]=2[\,\mathbb{Q}(\sqrt2):\mathbb{Q}\,]=2.
  2. FpFp2Fp6\mathbb{F}_p \subseteq \mathbb{F}_{p^2} \subseteq \mathbb{F}_{p^6} is a tower of finite fields with degrees 22 and 33.
  3. QQ(t)Q(t,t)\mathbb{Q}\subseteq \mathbb{Q}(t)\subseteq \mathbb{Q}(t,\sqrt{t}) is a tower where the bottom extension is transcendental and the top over the middle is algebraic of degree 22.