Tower Law (Degree Multiplicativity)

In a finite tower of field extensions, degrees multiply.
Tower Law (Degree Multiplicativity)

Theorem (Tower Law).
Let KLMK \subseteq L \subseteq M be a tower of fields. If [L:K] [L:K] and [M:L] [M:L] are finite, then [M:K] [M:K] is finite and

[M:K]=[M:L][L:K]. [M:K] = [M:L]\,[L:K].

Equivalently, the is multiplicative in a .

Examples.

  1. QQ(2)Q(2,3) \mathbb{Q} \subset \mathbb{Q}(\sqrt2) \subset \mathbb{Q}(\sqrt2,\sqrt3):
    [Q(2):Q]=2[\,\mathbb{Q}(\sqrt2):\mathbb{Q}\,]=2, [Q(2,3):Q(2)]=2[\,\mathbb{Q}(\sqrt2,\sqrt3):\mathbb{Q}(\sqrt2)\,]=2, so [Q(2,3):Q]=4[\,\mathbb{Q}(\sqrt2,\sqrt3):\mathbb{Q}\,]=4.
  2. Finite fields: FpFp2Fp6 \mathbb{F}_p \subset \mathbb{F}_{p^2} \subset \mathbb{F}_{p^6}:
    [Fp2:Fp]=2[\,\mathbb{F}_{p^2}:\mathbb{F}_p\,]=2, [Fp6:Fp2]=3[\,\mathbb{F}_{p^6}:\mathbb{F}_{p^2}\,]=3, hence [Fp6:Fp]=6[\,\mathbb{F}_{p^6}:\mathbb{F}_p\,]=6.
  3. If KLK \subseteq L and M=LM=L, then [M:K]=[L:K]1[M:K]=[L:K]\cdot 1.

Related. , .