Uniqueness of Splitting Fields

Any two splitting fields of the same polynomial over K are K-isomorphic.
Uniqueness of Splitting Fields

Theorem (Uniqueness).
Let fK[x]f\in K[x] be a nonzero polynomial and let LL and LL' be splitting fields of ff over KK. Then there exists a KK-isomorphism

ϕ:L  L \phi: L \xrightarrow{\ \sim\ } L'

(i.e., an isomorphism fixing KK pointwise). The isomorphism is generally not unique.

This is the uniqueness part of .

Examples.

  1. If L=Q(2)L=\mathbb{Q}(\sqrt2) and L=Q(α)L'=\mathbb{Q}(\alpha) where α2=2\alpha^2=2, then α=±2\alpha=\pm\sqrt2 and the map 2α\sqrt2\mapsto \alpha gives a Q\mathbb{Q}-isomorphism LQLL\cong_{\mathbb{Q}} L'.
  2. For f=x2+x+1f=x^2+x+1 over F2\mathbb{F}_2, any two splitting fields are isomorphic to F4\mathbb{F}_4.
  3. For separable irreducible ff, the splitting field is characterized (up to KK-isomorphism) by “adjoin all roots.”

Related. , .