Separable + Normal ⇔ Galois (Finite Case)

A finite extension is Galois exactly when it is separable and normal.
Separable + Normal ⇔ Galois (Finite Case)

Theorem.
Let L/KL/K be a finite extension. Then L/KL/K is a if and only if it is both:

When these conditions hold, the has order Gal(L/K)=[L:K]|\mathrm{Gal}(L/K)|=[L:K] (see ).

Examples.

  1. Q(2)/Q\mathbb{Q}(\sqrt2)/\mathbb{Q} is separable (char 00) and normal (splitting field of x22x^2-2), hence Galois.
  2. Q(23)/Q\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q} is separable but not normal, hence not Galois.
  3. Fpn/Fp\mathbb{F}_{p^n}/\mathbb{F}_p is separable and normal (splitting field of xpnxx^{p^n}-x), hence Galois.

Related. , .