Primitive Element Theorem

Finite separable extensions are simple: L = K(α).
Primitive Element Theorem

Theorem (Primitive Element).
If L/KL/K is a finite , then LL is a of KK: there exists αL\alpha\in L such that

L=K(α). L = K(\alpha).

Equivalently, every finite separable extension is generated by a single element.

Examples.

  1. Q(2,3)=Q(2+3) \mathbb{Q}(\sqrt2,\sqrt3) = \mathbb{Q}(\sqrt2+\sqrt3).
    (One checks 2,3Q(2+3)\sqrt2,\sqrt3 \in \mathbb{Q}(\sqrt2+\sqrt3).)
  2. For any prime power q=pnq=p^n, the extension Fq/Fp\mathbb{F}_{q}/\mathbb{F}_p is simple: Fq=Fp(α)\mathbb{F}_{q}=\mathbb{F}_p(\alpha) for some α\alpha.
  3. The splitting field LL of x32x^3-2 over Q\mathbb{Q} is finite separable (characteristic 00), hence L=Q(α)L=\mathbb{Q}(\alpha) for some αL\alpha\in L.

Related. , .