Field norm

For a finite extension L/K, N_{L/K}(α) is the determinant of multiplication-by-α as a K-linear map.
Field norm

Definition. Let L/KL/K be a finite with n=[L:K]n=[L:K]. For αL\alpha\in L, let mα(x)=αxm_\alpha(x)=\alpha x be multiplication by α\alpha. The norm of α\alpha from LL to KK is

NL/K(α)  =  det(mα)K, \mathrm{N}_{L/K}(\alpha) \;=\; \det(m_\alpha)\in K,

the usual of this KK-linear operator.

The norm is multiplicative: N(αβ)=N(α)N(β)\mathrm{N}(\alpha\beta)=\mathrm{N}(\alpha)\mathrm{N}(\beta), and is compatible with towers (see ).

See also. , (the norm sends L×K×L^\times\to K^\times).

Examples.

  1. In L=Q(d)L=\mathbb{Q}(\sqrt d) (char 2\neq 2), NL/Q(a+bd)=a2db2\mathrm{N}_{L/\mathbb{Q}}(a+b\sqrt d)=a^2-d b^2.
  2. In C/R\mathbb{C}/\mathbb{R}, NC/R(a+bi)=a2+b2\mathrm{N}_{\mathbb{C}/\mathbb{R}}(a+bi)=a^2+b^2.
  3. For L=FqnL=\mathbb{F}_{q^n} over Fq\mathbb{F}_q, NL/Fq(α)=α(qn1)/(q1)\mathrm{N}_{L/\mathbb{F}_q}(\alpha)=\alpha^{(q^n-1)/(q-1)}.