Galois group

The group of field automorphisms of L that fix K pointwise, Gal(L/K).
Galois group

Definition. Let L/KL/K be a . The Galois group of L/KL/K is

Gal(L/K)  =  {σAut(L)  :  σ(a)=a for all aK}, \mathrm{Gal}(L/K) \;=\; \{\sigma\in \mathrm{Aut}(L)\;:\;\sigma(a)=a\ \text{for all } a\in K\},

a subgroup of the of LL. With composition, Gal(L/K)\mathrm{Gal}(L/K) is a .

When L/KL/K is , Gal(L/K)\mathrm{Gal}(L/K) encodes intermediate fields via the .

See also. , .

Examples.

  1. Gal(C/R)={id,complex conjugation}C2\mathrm{Gal}(\mathbb{C}/\mathbb{R})=\{ \mathrm{id}, \text{complex conjugation}\}\cong C_2.
  2. Gal(Q(2)/Q)C2\mathrm{Gal}(\mathbb{Q}(\sqrt2)/\mathbb{Q})\cong C_2, sending 2±2\sqrt2\mapsto \pm\sqrt2.
  3. Gal(Fpn/Fp)\mathrm{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) is cyclic of order nn, generated by xxpx\mapsto x^p (see ).