Galois extension

An algebraic extension that is both normal and separable.
Galois extension

Definition. An L/KL/K is Galois if it is both

In this case the Gal(L/K)\mathrm{Gal}(L/K) controls the field via the . For finite Galois extensions, one has Gal(L/K)=[L:K]|\mathrm{Gal}(L/K)|=[L:K] (see ).

See also. , .

Examples.

  1. C/R\mathbb{C}/\mathbb{R} is Galois; Gal(C/R)C2\mathrm{Gal}(\mathbb{C}/\mathbb{R})\cong C_2.
  2. Fpn/Fp\mathbb{F}_{p^n}/\mathbb{F}_p is Galois (indeed cyclic), generated by the automorphism.
  3. The splitting field of x32x^3-2 over Q\mathbb{Q}, namely Q(23,ζ3)\mathbb{Q}(\sqrt[3]{2},\zeta_3), is Galois over Q\mathbb{Q}.