Degree of a Finite Galois Extension Equals Group Order

For finite Galois L/K, the extension degree equals |Gal(L/K)|.
Degree of a Finite Galois Extension Equals Group Order

Theorem.
If L/KL/K is a finite , then

[L:K]=Gal(L/K). [L:K] = |\mathrm{Gal}(L/K)|.

Equivalently, the has size equal to the .

This is a key numerical input in the .

Examples.

  1. Q(2)/Q\mathbb{Q}(\sqrt2)/\mathbb{Q} is Galois with group {1,22}\{1,\sqrt2\mapsto-\sqrt2\}, so [L:K]=2=G[L:K]=2=|G|.
  2. Fpn/Fp\mathbb{F}_{p^n}/\mathbb{F}_p is Galois and Gal(Fpn/Fp)=n|\mathrm{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)|=n (see ).
  3. If LL is the splitting field over Q\mathbb{Q} of an irreducible separable cubic with Galois group S3S_3, then [L:Q]=6[L:\mathbb{Q}]=6.

Related. .