Fundamental Theorem of Symmetric Polynomials

Every symmetric polynomial is a polynomial in the elementary symmetric polynomials.
Fundamental Theorem of Symmetric Polynomials

Theorem.
Let RR be a and consider R[x1,,xn]R[x_1,\dots,x_n] (a ). A polynomial fR[x1,,xn]f\in R[x_1,\dots,x_n] is symmetric if it is invariant under every permutation of the variables.

Then every symmetric polynomial ff can be written uniquely as

f=F(e1,,en) f = F(e_1,\dots,e_n)

for some FR[t1,,tn]F\in R[t_1,\dots,t_n], where eke_k is the kk-th elementary symmetric polynomial:

e1=ixi,e2=i<jxixj, , en=x1xn. e_1=\sum_i x_i,\quad e_2=\sum_{i<j}x_ix_j,\ \dots,\ e_n=x_1\cdots x_n.

Examples.

  1. For n=2n=2, x12+x22=(x1+x2)22x1x2=e122e2x_1^2+x_2^2 = (x_1+x_2)^2 - 2x_1x_2 = e_1^2-2e_2.
  2. For n=3n=3, x12+x22+x32=e122e2x_1^2+x_2^2+x_3^2 = e_1^2 - 2e_2.
  3. For n=2n=2, x13+x23=(x1+x2)33(x1+x2)(x1x2)=e133e1e2x_1^3+x_2^3 = (x_1+x_2)^3 - 3(x_1+x_2)(x_1x_2)= e_1^3-3e_1e_2.

Related. , .