Fundamental Theorem of Galois Theory

Intermediate fields correspond to subgroups of the Galois group.
Fundamental Theorem of Galois Theory

Theorem (FTGT).
Let L/KL/K be a finite with G=Gal(L/K)G=\mathrm{Gal}(L/K). There is an inclusion-reversing bijection

{intermediate fields KEL}{subgroups HG}, \{\text{intermediate fields }K\subseteq E\subseteq L\} \longleftrightarrow \{\text{subgroups }H\le G\},

given by

EGal(L/E),HLH:={xL:σ(x)=x σH}, E \mapsto \mathrm{Gal}(L/E), \qquad H \mapsto L^H := \{x\in L : \sigma(x)=x\ \forall\sigma\in H\},

the of HH.

It satisfies:

  • [L:E]=Gal(L/E)[L:E]=|\,\mathrm{Gal}(L/E)\,| and [E:K]=[G:Gal(L/E)][E:K]=[G:\mathrm{Gal}(L/E)] (compare ).
  • E/KE/K is Galois iff Gal(L/E)G\mathrm{Gal}(L/E)\trianglelefteq G, and then Gal(E/K)G/Gal(L/E)\mathrm{Gal}(E/K)\cong G/\mathrm{Gal}(L/E).

Examples.

  1. L=Q(2)L=\mathbb{Q}(\sqrt2), GC2G\cong C_2: subgroups are {1}\{1\} and GG, corresponding to fields LL and Q\mathbb{Q}.
  2. L=FpnL=\mathbb{F}_{p^n} over K=FpK=\mathbb{F}_p: GG is cyclic of order nn (see ); subgroups correspond to subfields Fpd\mathbb{F}_{p^d} with dnd\mid n.
  3. For the splitting field of x32x^3-2 over Q\mathbb{Q}, GS3G\cong S_3; intermediate fields correspond to subgroups of S3S_3.

Related. , .