Fixed field

For a group G of automorphisms of L, the subfield L^G fixed pointwise by every element of G.
Fixed field

Definition. Let LL be a field and let GAut(L)G\le \mathrm{Aut}(L) be a subgroup of its . The fixed field of GG is

LG  =  {xL:σ(x)=x for all σG}. L^G \;=\; \{\,x\in L : \sigma(x)=x \text{ for all } \sigma\in G\,\}.

It is a subfield of LL. In settings, fixed fields of subgroups are exactly the (see and ).

See also. (automorphisms act on field elements).

Examples.

  1. If G=conjugationAut(C)G=\langle\text{conjugation}\rangle\le \mathrm{Aut}(\mathbb{C}), then CG=R\mathbb{C}^G=\mathbb{R}.
  2. For L=FpnL=\mathbb{F}_{p^n} and G=Gal(L/Fp)G=\mathrm{Gal}(L/\mathbb{F}_p), one has LG=FpL^G=\mathbb{F}_p.
  3. In L=Q(2)L=\mathbb{Q}(\sqrt2), the full Galois group GC2G\cong C_2 fixes exactly Q\mathbb{Q}: LG=QL^G=\mathbb{Q}.