Galois Group of a Finite Field Extension is Cyclic

Gal(F_{p^n}/F_p) is cyclic, generated by Frobenius.
Galois Group of a Finite Field Extension is Cyclic

Theorem.
Let q=pnq=p^n and let Fq\mathbb{F}_q be the finite field with qq elements. The extension Fq/Fp\mathbb{F}_q/\mathbb{F}_p is , and

Gal(Fq/Fp)Cn \mathrm{Gal}(\mathbb{F}_q/\mathbb{F}_p)\cong C_n

is cyclic of order nn, generated by the φ(x)=xp\varphi(x)=x^p.

More generally, Gal(Fqm/Fq)\mathrm{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q) is cyclic of order mm, generated by xxqx\mapsto x^q (see ).

Examples.

  1. Gal(Fp2/Fp)={1,φ}\mathrm{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)=\{1,\varphi\} where φ(x)=xp\varphi(x)=x^p.
  2. Gal(F23/F2)\mathrm{Gal}(\mathbb{F}_{2^3}/\mathbb{F}_2) is cyclic of order 33; its elements are 1,φ,φ21,\varphi,\varphi^2.
  3. For Fq6/Fq\mathbb{F}_{q^6}/\mathbb{F}_q, the Galois group is cyclic of order 66, generated by xxqx\mapsto x^q.

Related. , .