Field automorphism

A bijective field homomorphism σ: L → L; these form a group under composition.
Field automorphism

Definition. A field automorphism of a field LL is a bijective homomorphism σ:LL\sigma:L\to L (preserving 11). The set Aut(L)\mathrm{Aut}(L) of all field automorphisms is a under composition (compare ).

Given a subfield KLK\subseteq L, the automorphisms that fix KK pointwise form the Gal(L/K)\mathrm{Gal}(L/K).

See also. , .

Examples.

  1. Complex conjugation a+biabia+bi\mapsto a-bi is a nontrivial automorphism of C\mathbb{C} fixing R\mathbb{R}.
  2. In Q(2)\mathbb{Q}(\sqrt2), the map 22\sqrt2\mapsto -\sqrt2 extends uniquely to a field automorphism fixing Q\mathbb{Q}.
  3. On Fpn\mathbb{F}_{p^n}, the xxpx\mapsto x^p is an automorphism.