Discriminant of a field basis

For a finite extension L/K, the discriminant det(Tr(α_i α_j)) of a K-basis (α_i).
Discriminant of a field basis

Definition. Let L/KL/K be a finite extension of degree nn, and let α1,,αn\alpha_1,\dots,\alpha_n be a KK-basis of LL. The discriminant of this basis is

disc(α1,,αn)  =  det ⁣(TrL/K(αiαj))1i,jn    K, \mathrm{disc}(\alpha_1,\dots,\alpha_n) \;=\; \det\!\big(\mathrm{Tr}_{L/K}(\alpha_i\alpha_j)\big)_{1\le i,j\le n} \;\in\; K,

where TrL/K\mathrm{Tr}_{L/K} is the and det\det is the .

Under a change of basis by a matrix MGLn(K)M\in \mathrm{GL}_n(K), the discriminant scales by (detM)2(\det M)^2. In particular, whether the discriminant is zero or nonzero does not depend on the chosen basis (for separable extensions it is nonzero).

See also. , .

Examples.

  1. For L=Q(2)L=\mathbb{Q}(\sqrt2) with basis (1,2)(1,\sqrt2): (Tr(αiαj))=(2004)disc(1,2)=8. \big(\mathrm{Tr}(\alpha_i\alpha_j)\big)= \begin{pmatrix} 2 & 0\\ 0 & 4 \end{pmatrix} \quad\Rightarrow\quad \mathrm{disc}(1,\sqrt2)=8.
  2. For L=Q(i)L=\mathbb{Q}(i) with basis (1,i)(1,i), one gets disc(1,i)=4\mathrm{disc}(1,i)=-4.
  3. For L=Fq2L=\mathbb{F}_{q^2} over Fq\mathbb{F}_q, any Fq\mathbb{F}_q-basis has nonzero discriminant because the trace pairing (x,y)Tr(xy)(x,y)\mapsto \mathrm{Tr}(xy) is nondegenerate.